Targeting leukemic stem cells by Bcl-2 inhibition

Researchers at The University of Texas M. D. Anderson Cancer Center have found, in laboratory studies, that the experimental drug ABT-737 which has shown promise in some cancers, can destroy acute myeloid leukemia (AML) blast, progenitor and even stem cells that are often resistant to standard chemotherapy treatment.

The drug was powerful in its own right, the researchers say, but they found that some AML cells were themselves resistant to ABT-737, so they added another drug that knocked out this secondary resistance. Together, these agents may provide a powerful therapy against AML, and could form the basis of a new way to treat the cancer, say the scientists, whose study was published in the November 14 issue of the journal, Cancer Cell.
Continue reading “Targeting leukemic stem cells by Bcl-2 inhibition”

Resveratrol prevents obesity and drastically increases physical endurance.

Researchers at the Institute of Genetics and Molecular and Cellular Biology in Illkirch, France have found that resveratrol boosts the exercise capacity of muscles in mice and protects against diet-induced insulin resistance and obesity. The research was published online on November 16, 2006 in the journal Cell.
Continue reading “Resveratrol prevents obesity and drastically increases physical endurance.”

‘Tribbles’ protein implicated in common and aggressive form of leukemia

Researchers at the University of Pennsylvania School of Medicine have identified a new protein associated with acute myelogenous leukemia (AML). Several lines of evidence point to a protein called Tribbles, named after the furry creatures that took over the starship Enterprise in the original Star Trek series. Tribbles was first described in fruit flies.

“Tribbles had never been directly linked to human malignancy,” says senior author Warren S. Pear, MD, PhD, Associate Professor of Pathology and Laboratory Medicine. “This is a new protein to human cancer and has a specific and overwhelming effect when expressed in hematopoietic stem cells, the cell type that gives rise to all elements of the blood.”
Continue reading “‘Tribbles’ protein implicated in common and aggressive form of leukemia”

Vaccine for brain tumors shows promising results

A vaccine for treating a recurrent cancer of the central nervous system that occurs primarily in the brain, known as glioma, has shown promising results in preliminary data from a clinical trial at UCSF Medical Center.

Findings from the first group of six patients in the study, being conducted at the UCSF Brain Tumor Research Center, showed that vitespen (trademarked as Oncophage), a vaccine made from the patient’s own tumor, was associated with tumor-specific immune response in patients with recurrent, high-grade glioma.
Continue reading “Vaccine for brain tumors shows promising results”

Neuroscientists break code on sight

In the sci-fi movie “The Matrix,” a cable running from a computer into Neo’s brain writes in visual perceptions, and Neo’s brain can manipulate the computer-created world. In reality, scientists cannot interact directly with the brain because they do not understand enough about how it codes and decodes information.

Now, neuroscientists in the McGovern Institute at MIT have been able to decipher a part of the code involved in recognizing visual objects. Practically speaking, computer algorithms used in artificial vision systems might benefit from mimicking these newly uncovered codes. Continue reading “Neuroscientists break code on sight”

Study Shows Abnormal Colon Growths Less Likely in Those Who Drink Red Wine

People who drink three or more glasses of red wine a week are less likely to get the abnormal colon growths that can lead to cancer, according to a new study.

The study doesn’t prove red wine prevents or treats colon cancer, and the researchers aren’t recommending red wine for colon cancer prevention. But they suggest that a compound found in grapes and red wine – the antioxidant resveratrol — may cut the odds of getting abnormal colon growths that can become cancerous.

Read rest of the story at WebMD

Cell transplants restore sight in mice

Scientists have successfully transplanted light-sensing cells called photoreceptors, which are immature retinal stem cells, directly into the eyes of mice and restored their visual function. The mice had eye damage similar to that seen in many human eye diseases. Experts welcomed the study, published in the magazine Nature, saying it was “stunning” research.

The achievement is based on a novel technology in which the cells are introduced at a particular stage in their development. It was carried out at the London Institute of Ophthalmology using a novel approach developed at the University of Michigan Kellogg Eye Center to tag rod precursor cells and prepare them for transplantation.

_42292564_ret_stem_cells_203in.gif
Continue reading “Cell transplants restore sight in mice”

Two nerve cells in direct contact

Movements in space create in humans and animals so-called optical flow fields which are characteristic for the movement in question. In a forward movement, the objects flow by laterally, objects at the front increase in size and objects further away hardly change at all. At a higher level in the visual centre in the brain, there must be a computation of the visual information, so that animals can differentiate between their own movement and movement of their environment and are able to correct their course if necessary. It is important for the analysis of flow fields that the movement information from both eyes is merged so that the whole flow field can be assessed. In their current study, Karl Farrow, Jürgen Haag and Alexander Borst have for the first time proved the direct link between two nerve cells, one in each half of the brain, combining the movement signals from both the facetted eyes of a fly.
2348_web.jpg
Continue reading “Two nerve cells in direct contact”

How to Resurrect an Extinct Retrovirus

French researchers have resurrected a retrovirus that became trapped in the human genome about five million years ago. Pieced together from existing sequences in human DNA, the reconstructed virus was able to infect mammalian cells weakly, suggesting that it works similarly to the extinct organism.

aae5aa31-e7f2-99df-3d8667a185a61229_1.gif
Continue reading “How to Resurrect an Extinct Retrovirus”

Secret of Heart Regeneration Uncovered

New evidence to explain how a common tropical fish mends a broken heart may suggest methods for coaxing the damaged hearts of mammals to better heal, researchers report in the November 3, 2006 issue of Cell, published by Cell Press.

The researchers found that the hearts of zebrafish harbor progenitor cells that spring into action to restore wounded heart muscle. Cells from a membrane layer that surrounds the heart, called the epicardium, follow suit, invading the wounded cardiac tissue and stimulating the growth of new blood vessels.
aaffd0d5-e7f2-99df-3c4dea936e6d7cd6_1.gif
Continue reading “Secret of Heart Regeneration Uncovered”

Link identified between age, cardiovascular disease

Researchers in the Linus Pauling Institute at Oregon State University have discovered a fundamental mechanism that causes aging blood vessels to lose their elasticity – a literal “hardening of the arteries” that is often a prelude to high blood pressure and cardiovascular disease.

An understanding of this mechanism, scientists say, provides an important new target for both drugs and dietary changes that might help prevent or treat atherosclerosis and heart disease. This is a leading cause of death around the world that, in some form, affects about 80 percent of older Americans.
Continue reading “Link identified between age, cardiovascular disease”

Low folate diets found to increase risk of colorectal cancer

A new study by scientists at the MUHC has revealed that a diet low in folate may increase the risk of developing colorectal cancer. Published in the scientific journal Cancer Research today, the study not only illustrates a way to prevent the disease but also provides further insight into the mechanisms of the disease, which could lead to novel therapies. Using animal models, the MUHC study is the first to demonstrate directly that diets low in folate cause colorectal cancer, and follows on the heels of earlier research by the same team that revealed how high folate diets can protect against heart disease.
Continue reading “Low folate diets found to increase risk of colorectal cancer”

Major breakthrough in the mechanism of myelin formation

The discovery reported in this study sheds light on the mechanisms that control how myelin is formed during development of the nerves. The article, which will be published in the November 3rd issue of Science, constitutes an important step forward in our understanding of the process of myelination, and opens the way to new research in this field. The results of their study that could have a major impact on the treatment of diseases such as multiple sclerosis, and peripheral neuropathies.
Continue reading “Major breakthrough in the mechanism of myelin formation”

Reduced body temperature extends lifespan

“Our study shows it is possible to increase lifespan in mice by modest but prolonged lowering of core body temperature,” said Bruno Conti, an associate professor at Scripps Research who led the study. “This longer lifespan was attained independent of calorie restriction.”
Continue reading “Reduced body temperature extends lifespan”

T-ray breakthrough could make detecting disease far easier

A breakthrough in the harnessing of ‘T-rays’ – electromagnetic terahertz waves – which could dramatically improve the detecting and sensing of objects as varied as biological cell abnormalities and explosives has been announced.

Researchers at the University of Bath, UK, and in Spain have said they have found a way to control the flow of terahertz radiation down a metal wire. Their findings are set out in a letter published in the current journal Physical Review Letters.
Continue reading “T-ray breakthrough could make detecting disease far easier”

Researchers show that DNA gets kinky easily at the nanoscale

Scientists have answered a long-standing molecular stumper regarding DNA: How can parts of such a rigid molecule bend and coil without requiring large amounts of force? According to a team of researchers from the United States and the Netherlands, led by a physicist from the University of Pennsylvania, DNA is much more flexible than previously believed when examined over extremely small lengths. They used a technique called atomic force microscopy to determine the amount of energy necessary to bend DNA over nano-size lengths (about a million times smaller than a printed letter).
Continue reading “Researchers show that DNA gets kinky easily at the nanoscale”