Researchers generate new neurons in brains, spinal cords of living adult mammals

UT Southwestern Medical Center researchers created new nerve cells in the brains and spinal cords of living mammals without the need for stem cell transplants to replenish lost cells.

Although the research indicates it may someday be possible to regenerate neurons from the body’s own cells to repair traumatic brain injury or spinal cord damage or to treat conditions such as Alzheimer’s disease, the researchers stressed that it is too soon to know whether the neurons created in these initial studies resulted in any functional improvements, a goal for future research.
Continue reading “Researchers generate new neurons in brains, spinal cords of living adult mammals”

3D model of a boy’s heart speeds up life-saving operation

Operating on a child’s heart is a challenging procedure. Not only is the organ (presumably) defective, but it’s also small, complex, and delicate. So when Louisville, KY heart surgeon Erle Austin was preparing to operate on 14-month-old Roland Lian Cung Bawi’s heart, he first showed the scans of the muscle to two other surgeons, both of whom gave him “conflicting advice on how to proceed,” according to the Courier-Journal.

Then, Austin turned to the University of Louisville’s engineering school, which hooked him up with a MakerBot Replicator 2X. (From the video, it seems that the engineers had better luck with their 3D MakerBot printers than Ars ever did.) Using a computer model generated by the boy’s radiologist, the engineers fed the MakerBot with a new kind of flexible polymer “that’s similar in consistency to heart muscle,” Timothy Gornet, manager of the rapid prototyping center at U of L, told the Courier-Journal. They printed out three cross-sections of the heart, blown up to-scale, so that the surgeons could see the interior.

via 3D model of a boy’s heart speeds up life-saving operation | Ars Technica.

HIV and AIDS

his 3D medical animation shows the function of white blood cells in normal immunity. It also portrays how the human immunodeficiency virus (HIV) affects the immune system and causes acquired immunodeficiency syndrome (AIDS). Common types of antiretroviral medications used to treat HIV and AIDS are also shown.

Building Artificial Cells Will Be a Noisy Business

Engineers like to make things that work. And if one wants to make something work using nanoscale components—the size of proteins, antibodies, and viruses—mimicking the behavior of cells is a good place to start since cells carry an enormous amount of information in a very tiny packet. As Erik Winfree, professor of computer science, computation and neutral systems, and bioengineering, explains, “I tend to think of cells as really small robots. Biology has programmed natural cells, but now engineers are starting to think about how we can program artificial cells. We want to program something about a micron in size, finer than the dimension of a human hair, that can interact with its chemical environment and carry out the spectrum of tasks that biological things do, but according to our instructions.”

Getting tiny things to behave is, however, a daunting task. A central problem bioengineers face when working at this scale is that when biochemical circuits, such as the one Winfree has designed, are restricted to an extremely small volume, they may cease to function as expected, even though the circuit works well in a regular test tube. Smaller populations of molecules simply do not behave the same as larger populations of the same molecules, as a recent paper in Nature Chemistry demonstrates.

 

via Building Artificial Cells Will Be a Noisy Business | Caltech.

Molly Stevens: A new way to grow bone

What does it take to regrow bone in mass quantities? Typical bone regeneration — wherein bone is taken from a patient’s hip and grafted onto damaged bone elsewhere in the body — is limited and can cause great pain just a few years after operation. In an informative talk, Molly Stevens introduces a new stem cell application that harnesses bone’s innate ability to regenerate and produces vast quantities of bone tissue painlessly.

Brain-Wide Map of “Neural Highways” Is First of Its Kind

For the first time ever, neuroscientists have completed a comprehensive roadmap of the top-trafficked communication highways in the human brain.

This  white-matter map not only charts the geography of these neural highways – it also plots out which of them interact with the most other paths, which are most crucial for supporting key brain functions, and which ones leave the whole brain most vulnerable to long-term damage if they’re disrupted.

via Brain-Wide Map of “Neural Highways” Is First of Its Kind | MIND Guest Blog, Scientific American Blog Network.

Acute Coronary Syndrome and Heart Attack

This 3D medical animation shows the coronary vessels in the heart and the different ways they may become blocked. The symptoms of acute coronary syndrome (ACS) are depicted. The animation finishes up with common treatments for acute coronary syndrome and heart attack.

Brain Implant Lets One Monkey Control Another

In work inspired partly by the movie “Avatar,” one monkey could control the body of another monkey using thought alone by connecting the brain of the puppet-master monkey to the spine of the other through a prosthesis, researchers say.

These findings could help lead to implants that help patients overcome paralysis, scientists added.

Paralysis due to nerve or spinal cord damage remains a challenge for current surgical techniques. Scientists are now attempting to restore movement to such patients with brain-machine interfaces that allow people to operate computers or control robotic limbs.

via Brain Implant Lets One Monkey Control Another | LiveScience.

Iron deficiency may increase stroke risk through sticky blood

Scientists at Imperial College London have discovered that iron deficiency may increase stroke risk by making the blood more sticky.

The findings, published in the journal PLOS ONE, could ultimately help with stroke prevention.

Every year, 15 million people worldwide suffer a stroke. Nearly six million die and another five million are left permanently disabled. The most common type, ischaemic stroke, occurs because the blood supply to the brain is interrupted by small clots.

The Imperial team found that iron deficiency increases the stickiness of small blood cells called platelets, which initiate blood clotting when they stick together. Although a link between iron deficiency and sticky platelets was first discovered almost 40 years ago, its role has been overlooked until now.

main imagevia Iron deficiency may increase stroke risk through sticky blood.

Room lighting affects decision making, study suggests

Crime dramas frequently depict detectives interrogating suspected criminals under bright lights to get the truth out of them. Now, a new study may lend credence to this tactic, as it suggests human emotion – both positive or negative – is experienced more intensely under bright lights.

The research, conducted by investigators from the University of Toronto Scarborough in Canada and Northwestern University in Illinois, was published in the Journal of Consumer Psychology.

via Room lighting affects decision making, study suggests – Medical News Today.

The genetic origins of high-altitude adaptations in Tibetans

Genetic adaptations for life at high elevations found in residents of the Tibetan plateau likely originated around 30,000 years ago in peoples related to contemporary Sherpa. These genes were passed on to more recent migrants from lower elevations via population mixing, and then amplified by natural selection in the modern Tibetan gene pool, according to a new study by scientists from the University of Chicago and Case Western Reserve University, published in Nature Communications on Feb. 10.

The transfer of beneficial mutations between human populations and selective enrichment of these genes in descendent generations represents a novel mechanism for adaptation to new environments.

High elevations are challenging for humans because of low oxygen levels, but Tibetans spend their lives above 13,000 feet with little issue. They are better suited when compared to short-term visitors from low altitude due to physiological traits such as relatively low hemoglobin concentrations at altitude. Unique to Tibetans are variants of the EGLN1 and EPAS1 genes, key genes in the oxygen homeostasis system at all altitudes. These variants were hypothesized to have evolved around 3,000 years ago, a date which conflicts with much older archaeological evidence of human settlement in Tibet.

via The genetic origins of high-altitude adaptations in Tibetans – The University of Chicago Medicine.

DNA prostate test ‘will predict deadliest cancer risk’

DNA testing can predict which men face the highest risk of deadly prostate cancer, scientists say.

The team at the Institute of Cancer Research, in London, say men could soon be offered genetic screening in a similar way to breast cancer in women.

Prostate cancervia BBC News – DNA prostate test ‘will predict deadliest cancer risk’.

Beautiful but Sad Music Can Help People Feel Better

New research from psychologists at the universities of Kent and Limerick has found that music that is felt to be ‘beautiful but sad’ can help people feel better when they’re feeling blue.

The research investigated the effects of what the researchers described as Self-Identified Sad Music (SISM) on people’s moods, paying particular attention to their reasons for choosing a particular piece of music when they were experiencing sadness – and the effect it had on them.

The study identified a number of motives for sad people to select a particular piece of music they perceive as ‘sad’, but found that in some cases their goal in listening is not necessarily to enhance mood. In fact, choosing music identified as ‘beautiful’ was the only strategy that directly predicted mood enhancement, the researchers found.This image is a drawing of a brain with musical noted on it.

via Beautiful but Sad Music Can Help People Feel Better | Neuroscience News Research Articles | Neuroscience Social Network.

Human lung made in lab for first time –

For the first time, scientists have created human lungs in a lab — an exciting step forward in regenerative medicine, but an advance that likely wont help patients for many years.”Its so darn cool,” said Joan Nichols, a researcher at the University of Texas Medical Branch. “Its been science fiction and were moving into science fact.”If the lungs work — and thats a big if — they could help the more than 1,600 people awaiting a lung transplant. Lungs are one of many body parts being manufactured in the lab — some parts, such as tracheas and livers, are even further along.

via Human lung made in lab for first time – CNN.com.

Tracing Ancestry, Researchers Produce a Genetic Atlas of Human Mixing Events

The rise and fall of empires, the march of armies, the flow of trade routes, the practice of slavery — all these events have led to a mixing of populations around the world. Such episodes have left a record in the human genome, but one that has so far been too complex to decipher on a global scale.

Now, geneticists applying new statistical approaches have taken a first shot at both identifying and dating the major population mixture events of the last 4,000 years, with the goal of providing a new source of information for historians.

via Tracing Ancestry, Researchers Produce a Genetic Atlas of Human Mixing Events – NYTimes.com.

‘On’ switches for cells

Whether human or animal, vertebrate or invertebrate, nearly every creature begins life as a tiny clump of cells. Before those cells can begin blossoming toward being a fully formed organism, however, they first must reorganize themselves into layers, each of which goes on to form complex structures such as internal organs, skin, muscle, and bone.

The signals that trigger that reorganization, however, have been largely a mystery, until now.

Scientists at Harvard have identified a previously unknown embryonic signal, dubbed Toddler, that instructs cells to move and reorganize, through a process known as gastrulation, into three layers: the ectoderm, mesoderm, and endoderm. The new signal is described in a Jan. 9 paper in the journal Science.

via ‘On’ switches for cells | Harvard Gazette.

The Creative Brain How Insight Works

It is a feeling we all know – the moment when a light goes on in your head. In a sudden flash of inspiration, a new idea is born. Today, scientists are using some unusual techniques to try to work out how these moments of creativity – whether big, small or life-changing – come about. They have devised a series of puzzles and brainteasers to draw out our creative behaviour, while the very latest neuroimaging technology means researchers can actually peer inside our brains and witness the creative spark as it happens. What they are discovering could have the power to make every one of us more creative

Split brain behavioral experiments

To reduce the severity of his seizures, Joe had the bridge between his left and right cerebral hemisphers (the corpus callosum) severed. As a result, his left and right brains no longer communicate through that pathway.