‘Brain wi-fi’ reverses leg paralysis in primate first – BBC News

An implant that beams instructions out of the brain has been used to restore movement in paralysed primates for the first time, say scientists.Rhesus monkeys were paralysed in one leg due to a damaged spinal cord.The team at the Swiss Federal Institute of Technology bypassed the injury by sending the instructions straight from the brain to the nerves controlling leg movement.

Source: ‘Brain wi-fi’ reverses leg paralysis in primate first – BBC News

Lab-grown mini lungs successfully transplanted into mice — ScienceDaily

Researchers at the University of Michigan have transplanted lab-grown mini lungs into immunosuppressed mice where the structures were able to survive, grow and mature.”In many ways, the transplanted mini lungs were indistinguishable from human adult tissue,” says senior study author Jason Spence, Ph.D., associate professor in the Department of Internal Medicine and the Department of Cell and Developmental Biology at the U-M Medical School.

Source: Lab-grown mini lungs successfully transplanted into mice — ScienceDaily

One In 10 Children May Have A Natural AIDS Defense Mechanism | Popular Science

 

Some kids may very well have magical superpowers. About one in 10 children infected with HIV have a built-in mechanism in their immune system that protects them from developing AIDS, according to a new study conducted in South Africa.Despite high levels of the virus in their blood, the children’s immune systems stayed calm and did not let the infection worsen, researchers reported in the journal Science Translational Medicine. “This is quite unusual because in general the progression from HIV infection to serious disease is more rapid in children than in adults. About 60 percent of kids infected die within two and a half years,” said senior study author Philip Goulder, a pediatric infectious disease researcher at the University of Oxford.

Source: One In 10 Children May Have A Natural AIDS Defense Mechanism | Popular Science

First 3D-Printed Heart-On-A-Chip With Integrated Sensors | The Science Explorer

Technique paves the way for more complex, customizable devices.

Harvard University researchers have made the first entirely 3D-printed organ-on-a-chip with integrated sensing. Built by a fully automated, digital manufacturing procedure, the 3D-printed heart-on-a-chip can be quickly fabricated and customized, allowing researchers to easily collect reliable data for short-term and long-term studies.

This new approach to manufacturing may one day allow researchers to rapidly design organs-on-chips, also known as microphysiological systems, that match the properties of a specific disease or even an individual patient’s cells.

Source: First 3D-Printed Heart-On-A-Chip With Integrated Sensors | The Science Explorer

Gene therapy shows promise for treating Niemann-Pick disease type C1 | National Institutes of Health (NIH)

For the first time, National Institutes of Health researchers have demonstrated in mice that gene therapy may be the best method for correcting the single faulty gene that causes Niemann-Pick disease, type C1 (NPC1). The gene therapy involved inserting a functional copy of the NPC1 gene into mice with the disease; the treated animals were then found to have less severe NPC1 symptoms. The study, led by researchers at NIH’s National Human Genome Research Institute (NHGRI) and the Eunice Kennedy Shriver National Institute of Child Health and Human Development, was published Oct. 26, 2016, in the journal Human Molecular Genetics.

Source: Gene therapy shows promise for treating Niemann-Pick disease type C1 | National Institutes of Health (NIH)

3D Medical Animation Demo Reel – John Liebler on Vimeo

Beneath our everyday world there is a miniature universe of cells, trillions of tiny worlds, unseen and beautiful. Here is the latest Art of the Cell demo reel, including clips from many of the projects I have worked on, such as “Biology: How Life Works”, and “The Inner Life of the Cell”. In this video compilation, you will glimpse transport molecules strutting through the cellular landscape, watch antibodies mark cancer cells for destruction, view viral rna enclosed in geometric capsids, and witness apoptosomes gathering in a cell’s final hour. Look on as spinning atp synthases generate power deep in the folds of mitochondria, observe chromosomes divide as a cell undergoes mitosis, and see signals amplified as they cascade through the cytosol.

https://player.vimeo.com/static/proxy.html

Brain’s Support Cells Could Explain Mysterious “Spreading Pain” – Scientific American

In people who suffer from pain disorders, painful feelings can severely worsen and spread to other regions of the body. Patients who develop chronic pain after surgery, for example, will often feel it coming from the area surrounding the initial injury and even in some parts of the body far from where it originates. New evidence suggests glia, non-neuronal cells in the brain, may be the culprits behind this effect.Glia were once thought to simply be passive, supporting cells for neurons. But scientists now know they are involved in everything from metabolism to neurodegeneration. A growing body of evidence points to their key role in pain. In a study published today in Science, researchers at the Medical University of Vienna report that glia are involved in long-term potentiation (LTP), or the strengthening of synapses, in pain pathways in the spinal cord.

Source: Brain’s Support Cells Could Explain Mysterious “Spreading Pain” – Scientific American