Epigenetics: A timeline

Researchers are clarifying epigenetic intricacies such as missing heritability, disease markers, methylated proteins, and imprinted genes. Learn about the history of epigenetics in this timeline spanning 130 years.

Advertisements

Scientists Create the First Synthetic Bacterial Genome

A team of 17 researchers at the J. Craig Venter Institute (JCVI) has created the largest man-made DNA structure by synthesizing and assembling the 582,970 base pair genome of a bacterium, Mycoplasma genitalium JCVI-1.0. This work, published online today in the journal Science by Dan Gibson, Ph.D., et al, is the second of three key steps toward the team’s goal of creating a fully synthetic organism. In the next step, which is ongoing at the JCVI, the team will attempt to create a living bacterial cell based entirely on the synthetically made genome.
Continue reading “Scientists Create the First Synthetic Bacterial Genome”

New clinical trial results show how personalized medicine will alter treatment of genetic disorders

One of the nation’s pre-eminent genetic researchers, Eric Hoffman, PhD, of Children’s Research Institute at Children’s National Medical Center, predicts that in relatively short order, medicine’s next innovation–individualized molecular therapies–will have the unprecedented ability to treat muscular dystrophies, and other disorders.

Continue reading “New clinical trial results show how personalized medicine will alter treatment of genetic disorders”

Human genetic variation — Science’s ‘Breakthrough of the Year’

In 2007, researchers were dazzled by the degree to which genomes differ from one human to another and began to understand the role of these variations in disease and personal traits. Science and its publisher, AAAS, the nonprofit science society, recognize “Human Genetic Variation” as the Breakthrough of the Year, and identify nine other of the year’s most significant scientific accomplishments in the 21 December issue.

Continue reading “Human genetic variation — Science’s ‘Breakthrough of the Year’”

Gene regulation, not just genes, is what sets humans apart from primates

The striking differences between humans and chimps aren’t so much in the genes we have, which are 99 percent the same, but in the way those genes are used, according to new research from a Duke University team.

It’s rather like the same set of notes being played in very different ways.

In two major traits that set humans apart from chimps and other primates – those involving brains and diet – gene regulation, the complex cross-talk that governs when genes are turned on and off, appears to be significantly different.

Continue reading “Gene regulation, not just genes, is what sets humans apart from primates”

Biologists discover a reason why chromosomes break, often leading to cancer

In the past ten years, researchers in genome stability have observed that many kinds of cancer are associated with areas where human chromosomes break. They have hypothesized – but never proven – that slow or altered replication led to the chromosomes breaking.

In a Tufts University study published in the Aug. 3 journal “Molecular Cell,” two molecular biologists have used yeast artificial chromosomes to prove the hypothesis. The Tufts researchers have found a highly flexible DNA sequence that increases fragility and stalls replication, which then causes the chromosome to break.

Continue reading “Biologists discover a reason why chromosomes break, often leading to cancer”

Risk genes for multiple sclerosis uncovered

A large-scale genomic study has uncovered new genetic variations associated with multiple sclerosis (MS), findings that suggest a possible link between MS and other autoimmune diseases. The study, led by an international consortium of clinical scientists and genomics experts, is the first comprehensive study investigating the genetic basis of MS. Findings appear in the July 29 online edition of the New England Journal of Medicine.

Continue reading “Risk genes for multiple sclerosis uncovered”