Higher-protein diets can improve appetite control and satiety

A new study demonstrates that higher-protein meals improve perceived appetite and satiety in overweight and obese men during weight loss.(1) According to the research, published in Obesity, higher-protein intake led to greater satiety throughout the day as well as reductions in both late-night and morning appetite compared to a normal protein diet.
Continue reading “Higher-protein diets can improve appetite control and satiety”

Advertisements

Researchers use new approach to predict protein function

In a paper published online this month in the journal Nature Chemical Biology, researchers report that they have developed a way to determine the function of some of the hundreds of thousands of proteins for which amino acid sequence data are available, but whose structure and function remain unknown.

Continue reading “Researchers use new approach to predict protein function”

Scientists develop a general ‘control switch’ for protein activity

Prof. Mordechai “Moti” Liscovitch and graduate student Oran Erster of the Weizmann Institute’s Biological Regulation Department, have recently developed a unique “switch” that can control the activity of any protein, raising it several-fold or stopping it almost completely. The method provides researchers with a simple and effective tool for exploring the function of unknown proteins, and in the future the new technique may find many additional uses.

The switch has a genetic component and a chemical component: Using genetic engineering, the scientists insert a short segment of amino acids into the amino acid sequence making up the protein. This segment is capable of binding strongly and selectively to a particular chemical drug, which affects the activity level of the engineered protein by increasing or reducing it. When the drug is no longer applied, or when it is removed from the system, the protein returns to its natural activity level.

Continue reading “Scientists develop a general ‘control switch’ for protein activity”

Ancient retrovirus sheds light on HIV pandemic

Human resistance to a retrovirus that infected chimpanzees and other nonhuman primates 4 million years ago ironically may be at least partially responsible for the susceptibility of humans to HIV infection today.

“This ancient virus is a battle that humans have already won. Humans are not susceptible to it and have probably been resistant throughout millennia,” said senior author Michael Emerman, Ph.D., a member of the Human Biology and Basic Sciences divisions at the Hutchinson Center. “However, we found that during primate evolution, this innate immunity to one virus may have made us more vulnerable to HIV.”

Continue reading “Ancient retrovirus sheds light on HIV pandemic”

Discovery in plants suggests entirely new approach to treating human cancers

For the first time, scientists from the University of Washington School of Medicine, Indiana University Bloomington and the University of Cambridge have determined how a plant hormone — auxin — interacts with its hormone receptor, called TIR1. Their report, on the cover of this week’s issue of Nature, also may have important implications for the treatment of human disease, because TIR1 is similar to human enzymes that are known to be involved in cancer.
Continue reading “Discovery in plants suggests entirely new approach to treating human cancers”

‘Bridge’ protein spurs deadliest stages of breast cancer

A protein known for its ability to “bridge” interactions between other cellular proteins may spur metastasis in breast cancer, the disease’s deadliest stage, a study from Burnham Institute for Medical Research has found.
Continue reading “‘Bridge’ protein spurs deadliest stages of breast cancer”

‘Tribbles’ protein implicated in common and aggressive form of leukemia

Researchers at the University of Pennsylvania School of Medicine have identified a new protein associated with acute myelogenous leukemia (AML). Several lines of evidence point to a protein called Tribbles, named after the furry creatures that took over the starship Enterprise in the original Star Trek series. Tribbles was first described in fruit flies.

“Tribbles had never been directly linked to human malignancy,” says senior author Warren S. Pear, MD, PhD, Associate Professor of Pathology and Laboratory Medicine. “This is a new protein to human cancer and has a specific and overwhelming effect when expressed in hematopoietic stem cells, the cell type that gives rise to all elements of the blood.”
Continue reading “‘Tribbles’ protein implicated in common and aggressive form of leukemia”