Nanotech Trojan Horse That Kills Cancer

Scientists have created the nanotechnology equivalent of a Trojan horse to smuggle a powerful chemotherapeutic drug inside tumor cells – increasing the drug’s cancer-killing activity and reducing its toxic side effects.

Previous studies in cell cultures have suggested that attaching anticancer drugs to nanoparticles for targeted delivery to tumor cells could increase the therapeutic response. Now, U-M scientists have shown that this nanotechnology-based treatment is effective in living animals.

Continue reading “Nanotech Trojan Horse That Kills Cancer”

Advertisement

Nanomedicine opens the way for nerve cell regeneration

The ability to regenerate nerve cells in the body could reduce the effects of trauma and disease in a dramatic way. In two presentations at the NSTI Nanotech 2007 Conference, researchers describe the use of nanotechnology to enhance the regeneration of nerve cells. In the first method, developed at the University of Miami, researchers show how magnetic nanoparticles (MNPs) may be used to create mechanical tension that stimulates the growth and elongation of axons of the central nervous system neurons. The second method from the University of California, Berkeley uses aligned nanofibers containing one or more growth factors to provide a bioactive matrix where nerve cells can regrow.
Continue reading “Nanomedicine opens the way for nerve cell regeneration”

Nanoparticle Research Offers Hope of Artificial Retinas, Prostheses

The world’s first direct electrical link between nerve cells and photovoltaic nanoparticle films has been achieved by researchers at the University of Texas Medical Branch at Galveston (UTMB) and the University of Michigan. The development opens the door to applying the unique properties of nanoparticles to a wide variety of light-stimulated nerve-signaling devices — including the possible development of a nanoparticle-based artificial retina.

3423wee2.jpg
Continue reading “Nanoparticle Research Offers Hope of Artificial Retinas, Prostheses”

Nanoparticle assembly enters the fast lane

The speed of nanoparticle assembly can be accelerated with the assistance of the molecule that carries life’s genetic instructions, DNA, a team of researchers at the U.S. Department of Energy’s Brookhaven National Laboratory recently found. Nanoparticles, particles with dimensions on the order of billionths of a meter, could potentially be used for more efficient energy generation and data storage, as well as improved methods for diagnosing and treating disease. Learning how to control and tailor the assembly of these miniscule particles into larger functional systems remains a major challenge for scientists.
Continue reading “Nanoparticle assembly enters the fast lane”

Homing nanoparticles pack multiple assault on tumors

Scientists have developed nanoparticles that seek out tumors and bind to their blood vessels, and then attract more nanoparticles to the tumor target. Using this system they demonstrated that the homing nanoparticle could be used to deliver a “payload” of an imaging compound, and in the process act as a clotting agent, obstructing as much as 20% of the tumor blood vessels.
Continue reading “Homing nanoparticles pack multiple assault on tumors”

Technique reveals inner lives of red blood cells

For the first time, researchers at MIT can see every vibration of a cell membrane, using a technique that could one day allow scientists to create three-dimensional images of the inner workings of living cells.

Studying cell membrane dynamics can help scientists gain insight into diseases such as sickle cell anemia, malaria and cancer. Using a technique known as quantitative phase imaging, researchers at MIT’s George R. Harrison Spectroscopy Laboratory can see cell membrane vibrations as tiny as a few tens of nanometers (billionths of a meter).
Continue reading “Technique reveals inner lives of red blood cells”

Immune cell communication key to hunting viruses

Immunologists at the Kimmel Cancer Center at Thomas Jefferson University in Philadelphia have used nanotechnology to create a novel “biosensor” to solve in part a perplexing problem in immunology: how immune system cells called killer T-cells hunt down invading viruses.

They found that surprisingly little virus can turn on the killer T-cells, thanks to some complicated communication among so-called “antigen presenting” proteins that recognize and attach to the virus, in turn, making it visible to the immune system. T-cell receptors then “see” the virus, activating the T-cells.
Continue reading “Immune cell communication key to hunting viruses”

Researchers make nanosheets that mimic protein formation

How to direct and control the self-assembly of nanoparticles is a fundamental question in nanotechnology.

University of Michigan researchers have discovered a way to make nanocrystals in a fluid assemble into free-floating sheets the same way some protein structures form in living organisms.
Continue reading “Researchers make nanosheets that mimic protein formation”

Engineers Use DNA to Direct Nanowire Assembly and Growth

A growing number of engineers are using nature’s engineer – DNA – to create nanomaterials that can be used in everything from medical devices to computer circuits. A team from Brown University and Boston College is the first to use DNA to direct construction and growth of complex nanowires. Their work appears in Nanotechnology. Continue reading “Engineers Use DNA to Direct Nanowire Assembly and Growth”

Nanoparticles armed to combat cancer

Ultra-small particles loaded with medicine – and aimed with the precision of a rifle – are offering a promising new way to strike at cancer, according to researchers working at MIT and Brigham and Women's Hospital.

In a paper to appear the week of April 10 in the online edition of the Proceedings of the National Academy of Sciences, the team reports a way to custom design nanoparticles so they home in on dangerous cancer cells, then enter the cells to deliver lethal doses of chemotherapy. Normal, healthy cells remain unscathed.

nano.cancer.jpg
Continue reading “Nanoparticles armed to combat cancer”

Fluorescent Nanosensor Detects Cell Death

A team of investigators at Massachusetts General Hospital has developed a nanoparticle that signals when cells are undergoing apoptosis, the kind of cell death triggered by cancer therapies. The new nanoparticles could finally provide oncologists with a rapid assay that could tell them that a given therapy is working. This groundbreaking work was published in the journal Nano Letters.
Nanoparticles.jpg

Continue reading “Fluorescent Nanosensor Detects Cell Death”

Polymer nanoparticles eradicate tumors

Photodynamic therapy (PDT), which uses a light-sensitive chemical known as a photosensitizer to produce cell-killing “reactive oxygen,” has become an important option for the treatment of esophageal cancer and non-small cell lung cancer. Current photosensitizers, however, produce significant side effects, including sensitivity to the sun, that limits their wider use in treating cancer.

In an attempt to both eliminate those side effects and increase the anticancer activity of photosensitizers, researchers from MIT-Harvard Center of Cancer Nanotechnology Excellence, has developed a polymer nanoparticle to ferry photosensitizers into cancer cells, where they can then unleash their potent cell-killing effects.

Continue reading “Polymer nanoparticles eradicate tumors”

Combination of gold nanoparticles and radiation could be a treatment for Alzheimer’s

Chemists have identified a new approach for the possible treatment of Alzheimer’s disease that they say has the potential to destroy beta-amyloid fibrils and plaque — hypothesized to contribute to the mental decline of Alzheimer’s patients. The researchers say the new technique, which they call a type of “molecular surgery,” could halt or slow the disease’s progress without harming healthy brain cells.

Continue reading “Combination of gold nanoparticles and radiation could be a treatment for Alzheimer’s”

Collection of new nanoparticles seek out different cancer cells

Dr. Ralph Weissleder at Harvard Medical School and his colleagues are developing nanoparticles that can emit either magnetic or optical signals. The hope is to coat these nanoparticles with compounds that help guide their way toward specific cells. Such coated nanoparticles could then single out tumor cells to help physicians detect where they are in the body, even if they are few in number and otherwise unnoticeable.

Continue reading “Collection of new nanoparticles seek out different cancer cells”