Stem-cell transplantation improves muscles in muscular dystrophy animal model

Using embryonic stem cells from mice, UT Southwestern Medical Center researchers have prompted the growth of healthy – and more importantly, functioning – muscle cells in mice afflicted with a human model of Duchenne muscular dystrophy.

The study represents the first time transplanted embryonic stem cells have been shown to restore function to defective muscles in a model of muscular dystrophy.
Continue reading “Stem-cell transplantation improves muscles in muscular dystrophy animal model”

Advertisement

Beating Heart Created In Laboratory: Method May Revolutionize How Organ Tissues Are Developed

By using a process called whole organ decellularization, scientists from the University of Minnesota Center for Cardiovascular Repair grew functioning heart tissue by taking dead rat and pig hearts and reseeding them with a mixture of live cells. The research will be published online in the January 13 issue of Nature Medicine.

Continue reading “Beating Heart Created In Laboratory: Method May Revolutionize How Organ Tissues Are Developed”

Researchers create mathematical model of fruit fly eyes

Many researchers have tried to create a mathematical model of how cells pack together to form tissue, but most models have many different complicated factors, and no model is universal.

Researchers at Northwestern University have now created a functional equation — using only two parameters — to show how cells pack together to create the eyes of Drosophila, better known as the fruit fly. They hope that the pared-down equation can be applied to different kinds of tissues, leading to advances in regenerative medicine.

Continue reading “Researchers create mathematical model of fruit fly eyes”

New insight into factors that drive muscle-building stem cells

A report in the January issue of Cell Metabolism, a publication of Cell Press, provides new evidence explaining how stem cells known as satellite cells contribute to building muscles up in response to exercise. These findings could lead to treatments for reversing or improving the muscle loss that occurs in diseases such as cancer and AIDS as well as in the normal aging process, according to the researchers.

Continue reading “New insight into factors that drive muscle-building stem cells”

In a major breakthrough scientists reprogram human adult cells into embryonic stem cells

Acclaimed stem cell researcher Shinya Yamanaka, MD, PhD, has reported that he and his Kyoto University colleagues have successfully reprogrammed human adult cells to function like pluripotent embryonic stem (ES) cells. Because it circumvents much of the controversy and restrictions regarding generation of ES cells from human embryos, this breakthrough, reported in the journal Cell, should accelerate the pace of stem cell research.

Continue reading “In a major breakthrough scientists reprogram human adult cells into embryonic stem cells”

‘Micro’ livers could aid drug screening

MIT researchers have devised a novel way to create tiny colonies of living human liver cells that model the full-sized organ. The work could allow better screening of new drugs that are potentially harmful to the liver and reduce the costs associated with their development.
Continue reading “‘Micro’ livers could aid drug screening”

Researchers take first steps towards spinal cord reconstruction following injury

A new study has identified what may be a pivotal first step towards the regeneration of nerve cells following spinal cord injury, using the body’s own stem cells.

This seminal study, published in this week’s Proceedings of the National Academy of Science, identifies key elements in the body’s reaction to spinal injury, critical information that could lead to novel therapies for repairing previously irreversible nerve damage in the injured spinal cord.

Continue reading “Researchers take first steps towards spinal cord reconstruction following injury”

Scientists identifies gene that regulates blood-forming fetal stem cells

In the rancorous public debate over federal research funding, stem cells are generally assigned to one of two categories: embryonic or adult. But that’s a false dichotomy and an oversimplification. A new University of Michigan study adds to mounting evidence that stem cells in the developing fetus are distinct from both embryonic and adult stem cells.

Continue reading “Scientists identifies gene that regulates blood-forming fetal stem cells”

Scientists invent novel hydrogels for repairing, regenerating human tissue

University of Delaware scientists have invented a novel biomaterial with surprising antibacterial properties that can be injected as a low-viscosity gel into a wound where it rigidifies nearly on contact–opening the door to the possibility of delivering a targeted payload of cells and antibiotics to repair the damaged tissue.

Regenerating healthy tissue in a cancer-ridden liver, healing a biopsy site and providing wounded soldiers in battle with pain-killing, infection-fighting medical treatment are among the myriad uses the scientists foresee for the new technology.

 

Continue reading “Scientists invent novel hydrogels for repairing, regenerating human tissue”

MIT researchers probe bones’ tiny building blocks

In work that could lead to more effective diagnoses and treatments of bone diseases using only a pinhead-sized sample of a patient’s bone, MIT researchers report a first-of-its-kind analysis of bone’s mechanical properties.

The work, reported in the May 21 advance online edition of Nature Materials, sheds new light on how bone absorbs energy.
Continue reading “MIT researchers probe bones’ tiny building blocks”

Nanoparticle Research Offers Hope of Artificial Retinas, Prostheses

The world’s first direct electrical link between nerve cells and photovoltaic nanoparticle films has been achieved by researchers at the University of Texas Medical Branch at Galveston (UTMB) and the University of Michigan. The development opens the door to applying the unique properties of nanoparticles to a wide variety of light-stimulated nerve-signaling devices — including the possible development of a nanoparticle-based artificial retina.

3423wee2.jpg
Continue reading “Nanoparticle Research Offers Hope of Artificial Retinas, Prostheses”

Researchers create genetically matched embryonic stem cells for transplantation

Researchers at Children’s Hospital Boston report a new and efficient strategy, using eggs alone, for creating mouse embryonic stem cells that can be transplanted without the risk of rejection because the cells are compatible with the recipient’s immune system. The findings are published online in the journal Science on December 14.

Though done in mice, the work establishes the principle of using unfertilized eggs as a source of customized embryonic stem cells that are genetically matched to the egg donor at the genes that control recognition of cells by the immune system, making them potentially useful for transplantation therapies. There are several caveats, including the fact that only females could benefit from this technique, donating their own eggs to generate the stem cells, and concerns that the tissues derived from this special type of embryonic stem cells might not function normally.
Continue reading “Researchers create genetically matched embryonic stem cells for transplantation”

A Better Artificial Skin

A patient’s skin cells, genetically modified and grown in a test tube, could provide the next generation of artificial skin. As a first step in creating such replacement skin, scientists in Cincinnati have engineered bacteria-resistant skin cells in the lab and are now testing them in animals. Ultimately, they hope to produce a type of artificial skin that can sweat, tan, and fight off infection.

“We’re using genetic modification to try to get the cultured skin to behave more like normal skin,” says Dorothy Supp, a researcher at the Cincinnati Shriners Hospital for Children who led the project.

Read rest of the story at Technology Review

Scientists discover new, readily available source of stem cells

Scientists have discovered a new source of stems cells and have used them to create muscle, bone, fat, blood vessel, nerve and liver cells in the laboratory. The first report showing the isolation of broad potential stem cells from the amniotic fluid that surrounds developing embryos was published in Nature Biotechnology.

“Our hope is that these cells will provide a valuable resource for tissue repair and for engineered organs as well,” said Anthony Atala, M.D., senior researcher and director of the Institute for Regenerative Medicine at Wake Forest University School of Medicine.
Continue reading “Scientists discover new, readily available source of stem cells”

Scientists create 3-D scaffold for growing stem cells

Stem cells grew, multiplied and differentiated into brain cells on a new three-dimensional scaffold of tiny protein fragments designed to be more like a living body than any other cell culture system.

An MIT engineer and Italian colleagues will report the invention-which may one day replace the ubiquitous Petri dish for growing cells-in the Dec. 27th issue of the PLoS ONE. Shuguang Zhang, associate director of MIT’s Center for Biomedical Engineering, is a pioneer in coaxing tiny fragments of amino acids called self-assembling peptides to organize themselves into useful structures. Working with visiting graduate student Fabrizio Gelain from Milan, Zhang created a designer scaffold from a network of protein nanofibers, each 5,000 times thinner than a human hair and containing pores up to 20,000 times smaller than the eye of a needle.

The researchers were able to grow a healthy colony of adult mouse stem cells on the three-dimensional scaffold without the drawbacks of two-dimensional systems.
Continue reading “Scientists create 3-D scaffold for growing stem cells”

Muscle and bone from an ink-jet printer

A Pittsburgh-based research team has created and used an innovative ink-jet system to print “bio-ink” patterns that direct muscle-derived stem cells from adult mice to differentiate into both muscle cells and bone cells. The results, which could revolutionize the design of replacement body tissues, will be presented Sunday, Dec. 10 at the 46th annual meeting of the American Society for Cell Biology in San Diego.

This report is the first describing a system that can pattern the formation of multiple cell types within the same vessel from a single population of adult stem cells. The new preclinical advance in the field of regenerative medicine could one day benefit millions of people whose tissues are damaged from a variety of conditions, including fatal genetic diseases like Duchenne Muscular Dystrophy (DMD), wear and tear associated with aging joints, accidental trauma, and joint deterioration due to autoimmune disorders.
Continue reading “Muscle and bone from an ink-jet printer”

Secret of Heart Regeneration Uncovered

New evidence to explain how a common tropical fish mends a broken heart may suggest methods for coaxing the damaged hearts of mammals to better heal, researchers report in the November 3, 2006 issue of Cell, published by Cell Press.

The researchers found that the hearts of zebrafish harbor progenitor cells that spring into action to restore wounded heart muscle. Cells from a membrane layer that surrounds the heart, called the epicardium, follow suit, invading the wounded cardiac tissue and stimulating the growth of new blood vessels.
aaffd0d5-e7f2-99df-3c4dea936e6d7cd6_1.gif
Continue reading “Secret of Heart Regeneration Uncovered”

A new recipe for artificial blood vessels may help solve a tough clogging problem

Small, artificial blood vessels are meant to offer hope to cardiac-bypass patients. The problem is that these tiny synthetic vessels tend to clog. Now, biomedical engineer Donald Elbert and his team at Washington University, in St. Louis, have developed a new material designed to trick the body into building vessels from its own cells.
Continue reading “A new recipe for artificial blood vessels may help solve a tough clogging problem”

Landmark study of islet transplantation reveals potential benefits in uncontrolled type 1 diabetes

The results of the world’s first multicenter clinical trial of islet transplantation have confirmed the technique’s potential benefits in patients with difficult-to-control type 1 (or “juvenile”) diabetes. Published in the September 28, 2006 issue of the New England Journal of Medicine, the international team of investigators report that the Edmonton Protocol for islet transplantation can safely and successfully promote long-term stabilization of blood sugar levels in “brittle” diabetes patients and in some cases, relieve them of the need for insulin injections altogether for at least two years.
Continue reading “Landmark study of islet transplantation reveals potential benefits in uncontrolled type 1 diabetes”

Mapping system tells skin cells whether to become scalp or palm tissues

Global-positioning system aficionados know that it’s possible to precisely define any location in the world with just three geographic coordinates: latitude, longitude and altitude. Now scientists at the Stanford University School of Medicine have discovered that specialized skin cells use a similar mapping system to identify where they belong in the body and how to act once they arrive.

These cellular cornerstones direct embryonic patterning and wound healing by sending vital location cues to their neighbors, and may help in growing tissue for transplant or understanding metastatic cancer.
Continue reading “Mapping system tells skin cells whether to become scalp or palm tissues”

Blood clot fibers more elastic than spider’s web

The tiny fibers that comprise blood clots show extraordinary elasticity, on average stretching to almost three times their length while still retaining their ability to go back to their normal shape and expanding to more than four times their length before breaking, according to findings published in the journal Science this week by researchers at Wake Forest University.
Continue reading “Blood clot fibers more elastic than spider’s web”

Researchers transform stem cells found in human fat into smooth muscle cells

Researchers at UCLA today announced they have transformed adult stem cells taken from human adipose – or fat tissue – into smooth muscle cells, which help the normal function of a multitude of organs like the intestine, bladder and arteries. The study may help lead to the use of fat stem cells for smooth muscle tissue engineering and repair.
Reported in the July 24 online edition of the Proceedings of the National Academy of Sciences, the study is one of the first to show that stem cells derived from adipose tissue can be changed to acquire the physical and biochemical characteristics as well as the functionality of smooth muscle cells.
Continue reading “Researchers transform stem cells found in human fat into smooth muscle cells”

Researchers develop T-cells from human embryonic stem cells

Researchers from the UCLA AIDS Institute and the Institute for Stem Cell Biology and Medicine have demonstrated for the first time that human embryonic stem cells can be genetically manipulated and coaxed to develop into mature T-cells, raising hopes for a gene therapy to combat AIDS.

The study, to be published the week of July 3 in the online edition of the Proceedings of the National Academy of Sciences, found that it is possible to convert human embryonic stem cells into blood-forming stem cells that in turn can differentiate into the helper T-cells that HIV specifically targets. T-cells are one of the body’s main defenses against disease.
Continue reading “Researchers develop T-cells from human embryonic stem cells”

Progress being made in exploring potential use of stem cells to treat heart disease

Scientists are making headway in exploring the potential future use of stem cells to treat heart disease, according to a review article in the current issue of Nature (June 29, 2006).

Continue reading “Progress being made in exploring potential use of stem cells to treat heart disease”

Reprogramming Biology

Visionary futurist Ray Kurzweil, whose remarkable ideas on technological progress have been an inspiration for Biosingularity blogs, have a wonderful concise article on biological advances in recent issue of Scientific American

As a scientist working on biological systems I fully agree and whole heartedly support Kurzweil's observations that: " Biology is now in the early stages of an historic transition to an information science, while also gaining the tools to reprogram the ancient information systems of life ….. We are now beginning to understand biology as a set of information processes, and we're developing realistic models and simulations of how the processes involved in disease and aging progress. Moreover, we are developing the tools to reprogram them."

In the article Kurzweil predicts that tinkering with our genetic programs will extend human lifespan beyond the current limits. He also reiterates that biological systems are also subject to the "law of accelerating returns", which had tremendous impact on information technologies. Indeed, the cost of sequencing and synthesizing gene base pairs have decreased more than 10,000 fold over the last 15 years, and this exponential progress is currently accelerating as predicted by Kurzweil in his recent book. 

Read rest of the article at Scientific American web site.
 

Scientists Report First Human Recipients of Laboratory-Grown Organs

The first human recipients of laboratory-grown organs were reported today by Anthony Atala, M.D., director of the Institute for Regenerative Medicine at Wake Forest University School of Medicine. In The Lancet, Atala describes long-term success in children and teenagers who received bladders grown from their own cells.

The engineered bladders were grown from the patients’ own cells, so there is no risk of rejection. Scientists hope that laboratory-grown organs can one day help solve the shortage of donated organs available for transplantation. Atala reported that the bladders showed improved function over time — with some patients being followed for more than seven years.

Continue reading “Scientists Report First Human Recipients of Laboratory-Grown Organs”

Researchers Grow Bone Cells On Carbon Nanotubes

Researchers at the University of California, Riverside have published findings that show, for the first time, that bone cells can grow and proliferate on a scaffold of carbon nanotubes. Scientists found that the nanotubes, 100,000 times finer than a human hair, are an excellent scaffold for bone cells to grow on.

Nano.Bones.jpg

Continue reading “Researchers Grow Bone Cells On Carbon Nanotubes”

Findings advance use of adult stem cells for replacement bone

In a significant advance for regenerative medicine, researchers at Rice University have discovered a new way to culture adult stem cells from bone marrow such that the cells themselves produce a growth matrix that is rich in important biochemical growth factors.

The research, which appears online this week in the Proceedings of the National Academy of Sciences, is notable because of the science – researchers found they could coax bone cells into produce up to 75 times more calcium.
Continue reading “Findings advance use of adult stem cells for replacement bone”

Scientists find a way to make human collagen

Of all of the materials that make up our bodies, nothing is more ubiquitous than collagen. It is the most important structural protein in the body, reinforcing connective tissue, bones and teeth, and forming long, fibrous cables to strengthen tendons. Collagen forms sheets of tissue that support the skin and every internal organ. There is nothing in the body, in fact, that does not depend in some way on collagen.

In medicine, collagen from animals, principally cows, is used to rebuild tissue destroyed by burns and wounds. Commonly, it is employed in plastic surgery to augment the lips and cheeks of starlets and others seeking perpetual youth. Catgut, the biodegradable sutures made from cow or horse intestines and used in surgery to minimize scarring, is also a form of collagen.
But for such a commonplace and useful protein, collagen has defied the efforts of biomedical researchers who have tried mightily to synthesize it for use in applications ranging from new wound-healing technologies to alleviating arthritis. The reason: Scientists were unable to synthesize the human protein because they had no way to link the easily made short snippets of collagen into the long, fibrous molecules necessary to mimic the real thing.

But now a team of scientists from the University of Wisconsin-Madison, writing this week (Feb. 13, 2006) in the Proceedings of the National Academy of Sciences (PNAS), reports the discovery of a method for making human collagen in the lab.
Continue reading “Scientists find a way to make human collagen”

Turning Stem Cells into Tissues

Stem cells are cells that have the remarkable potential to develop into many different cell types in the body. Serving as a sort of repair system for the body, they can theoretically divide without limit to replenish other cells for as long as the person or animal is still alive.

The most eagerly anticipated therapeutic use for stem cells is regenerative medicine. Biologists dream of the day they can take a stem cell and create any of the body’s cell types, producing pancreas or liver tissue that doctors could use to aid a failing organ. But to realize that dream, scientists must first understand the forces operating in stem cells — what makes some stem cells stay stem cells, while others grow into brain, liver, and skin cells?

Technology review magazine from MIT has a nice article on how scientists are learning how to control the two unique properties of stem cells.

.stemcells.jpg

Scientists develop process for creating biocompatible fibers

Scientists at Virginia Tech have developed a single-step process for creating nonwoven fibrous mats from a small organic molecule – creating a new nanoscale material with potential applications where biocompatible materials are required, such as scaffolds for tissue growth and drug delivery. Continue reading “Scientists develop process for creating biocompatible fibers”

Scientists grow two new human stem cell lines in animal cell-free culture

Scientists working at the WiCell Research Institute, a private laboratory affiliated with the University of Wisconsin-Madison, have developed a precisely defined stem cell culture system free of animal cells and used it to derived two new human embryonic stem cell lines.

The new work, which is reported at Jan. 1, 2006 issue of the journal Nature Biotechnology, helps move stem cells a small step closer to clinical reality by completely ridding the culture medium in which they are grown of animal products that could harbor viruses or other deleterious agents.

HumanEScells.jpg
Continue reading “Scientists grow two new human stem cell lines in animal cell-free culture”

Printing Organs on Demand

Need a skin graft? A new trachea? A heart patch? Turn on your printer, and let it spit one out. A group of researchers hope printers’ whirs and buzzes will soon be saving lives.
Researchers at three universities have developed bio-ink and bio-paper that could make so-called organ printing a reality. So far, they’ve made tubes similar to human blood vessels and sheets of heart muscle cells, printed in three dimensions on a special printer.

Continue reading “Printing Organs on Demand”

Blood Vessels Grown From Skin

Two kidney dialysis patients from Argentina have received the world’s first blood vessels grown in a laboratory dish from snippets of their own skin, a technique that doctors hope will someday offer a new source of arteries and veins for diabetics and other patients.
Continue reading “Blood Vessels Grown From Skin”