Can Hobbyists and Hackers Transform Biotechnology?

For most of us, managing our health means visiting a doctor. The more serious our concerns, the more specialized a medical expert we seek. Our bodies often feel like foreign and frightening lands, and we are happy to let someone with an MD serve as our tour guide. For most of us, our own DNA never makes it onto our personal reading list.

Biohackers are on a mission to change all that. These do-it-yourself biology hobbyists want to bring biotechnology out of institutional labs and into our homes. Following in the footsteps of revolutionaries like Steve Jobs and Steve Wozniak, who built the first Apple computer in Jobs’s garage, and Sergey Brin and Larry Page, who invented Google in a friend’s garage, biohackers are attempting bold feats of genetic engineering, drug development, and biotech research in makeshift home laboratories.

In Biopunk, journalist Marcus Wohlsen surveys the rising tide of the biohacker movement, which has been made possible by a convergence of better and cheaper technologies. For a few hundred dollars, anyone can send some spit to a sequencing company and receive a complete DNA scan, and then use free software to analyze the results. Custom-made DNA can be mail-ordered off websites, and affordable biotech gear is available on Craigslist and eBay.

via Can Hobbyists and Hackers Transform Biotechnology? – Technology Review.

Advertisements

New study into bladder regeneration heralds organ replacement treatment

Researchers in the United States have developed a medical model for regenerating bladders using stem cells harvested from a patient’s own bone marrow. The research, published in STEM CELLS, is especially relevant for paediatric patients suffering from abnormally developed bladders, but also represents another step towards new organ replacement therapies.

The research, led by Dr Arun Sharma and Earl Cheng from the Feinberg School of Medicine at Northwestern University and Children’s Memorial Research Center, focused on bone marrow mesenchymal stem cells (MSCs) taken from the patient. Previously studies into the regenerative capacity of cells in bladders have focused on animal models, but these have translated poorly in clinical settings. Continue reading “New study into bladder regeneration heralds organ replacement treatment”

Scientists find potential strategy to eliminate poisonous protein from Alzheimer brains

Scientists at the Gladstone Institute of Neurological Disease (GIND) have identified a new strategy to destroy amyloid-beta (AB) proteins, which are widely believed to cause Alzheimer’s disease (AD). Li Gan, PhD, and her coworkers discovered that the activity of a potent AB-degrading enzyme can be unleashed in mouse models of the disease by reducing its natural inhibitor cystatin C (CysC). Continue reading “Scientists find potential strategy to eliminate poisonous protein from Alzheimer brains”

Chemists devise self-assembling ‘organic wires’

From pacemakers constructed of materials that so closely mimic human tissues that a patient’s body can’t discern the difference to devices that bypass injured spinal cords to restore movement to paralyzed limbs, the possibilities presented by organic electronics read like something from a science fiction novel.

Derived from carbon-based compounds (hence the term “organic”), these “soft” electronic materials are valued as lightweight, flexible, easily processed alternatives to “hard” electronics components such as metal wires or silicon semiconductors. And just as the semiconductor industry is actively developing smaller and smaller transistors, so, too, are those involved with organic electronics devising ways to shrink the features of their materials, so they can be better utilized in bioelectronic applications such as those above. Continue reading “Chemists devise self-assembling ‘organic wires’”

Gene therapy restores vision to mice with retinal degeneration

Massachusetts General Hospital (MGH) researchers have used gene therapy to restore useful vision to mice with degeneration of the light-sensing retinal rods and cones, a common cause of human blindness. Their report, appearing in the Oct. 14 Proceedings of the National Academy of Sciences, describes the effects of broadly expressing a light-sensitive protein in other neuronal cells found throughout the retina. Continue reading “Gene therapy restores vision to mice with retinal degeneration”

New class of antibiotics may lead to therapy for drug-resistant tuberculosis

Researchers are hot on the trail of a whole new class of broad-spectrum antibiotics, according to a new report in the October 17th issue of the journal Cell, a Cell Press publication.

The discovery holds promise at a time when a quarter of all deaths worldwide are the result of bacterial infectious diseases, and yet more and more disease-causing bacteria are growing resistant to currently available antibiotics. What’s more, the antibiotics under study in this report may offer a more effective and shorter course of treatment for tuberculosis (TB), a disease that is carried by one in three people in the world and that is particularly difficult to treat with today’s antibiotics. Continue reading “New class of antibiotics may lead to therapy for drug-resistant tuberculosis”

Computer model reveals cells’ inner workings

After spending years developing a computational model to help illuminate cell signaling pathways, a team of MIT researchers decided to see what would happen if they “broke” the model.

The results, reported in the Oct. 17 issue of the journal Cell, reveal new ways in which cells process chemical information and could indicate how to maximize the effectiveness of disease treatments such as chemotherapy. Continue reading “Computer model reveals cells’ inner workings”