Scientists map key landmarks in human genome

Dana-Farber Cancer Institute researchers have developed a powerful method for charting the positions of key gene-regulating molecules called nucleosomes throughout the human genome. The mapping tool could help uncover important clues for understanding and diagnosing cancer and other diseases, the scientists say. Moreover, it may shed light on the role of nucleosomes in the process of “reprogramming” an adult cell to its original embryonic state, which is a critical operation in cloning.
Continue reading “Scientists map key landmarks in human genome”

Advertisements

Researchers map out networks that determine cell fate

A two-step process appears to regulate cell fate decisions for many types of developing cells, according to researchers from the University of Chicago.

This finding sheds light on a puzzling behavior. For some differentiating stem cells, the first step leads not to a final decision but to a new choice. In response to the initial chemical signal, these cells take on the genetic signatures of two different cell types. It often requires a second signal for them to commit to a single cellular identity.

In the Aug. 25 2006 issue of Cell, the researchers, working with hematopoietic stem cells, which give rise to the many types of blood cells, show how “pioneer transcription factors” trigger the first step, pushing these stem cells towards this mixed lineage, midway between two related cell types — in this case between a macrophage and a neutrophil.
Continue reading “Researchers map out networks that determine cell fate”

‘Cancer prognosis gene’ found to control the fate of breast cells

The gene, called GATA-3, is in a family of genes that guides development of stem cells into mature cells. University of California, San Francisco researchers have now found that GATA-3 is also required for mature mammary cells to remain mature in the adult. In research focusing on mice mammary glands, they found that without GATA-3, mature cells revert to a less specialized, “undifferentiated” state characteristic of aggressive cancer.

The new finding suggests that this gene may play a key role in the development of breast cancer, the scientists report in the December 1 issue of the journal CELL.
Continue reading “‘Cancer prognosis gene’ found to control the fate of breast cells”

Researchers map out networks that determine cell fate

A two-step process appears to regulate cell fate decisions for many types of developing cells, according to researchers from the University of Chicago.

This finding sheds light on a puzzling behavior. For some differentiating stem cells, the first step leads not to a final decision but to a new choice. In response to the initial chemical signal, these cells take on the genetic signatures of two different cell types. It often requires a second signal for them to commit to a single cellular identity.
Continue reading “Researchers map out networks that determine cell fate”

Scientists Discover a Genetic Code for Organizing DNA

DNA – the long, thin molecule that carries our hereditary material – is compressed around protein scaffolding in the cell nucleus into tiny spheres called nucleosomes. The bead-like nucleosomes are strung along the entire chromosome, which is itself folded and packaged to fit into the nucleus. What determines how, when and where a nucleosome will be positioned along the DNA sequence?

Dr. Eran Segal and research student Yair Field of the Computer Science and Applied Mathematics Department at the Weizmann Institute of Science have succeeded, together with colleagues from Northwestern University in Chicago, in cracking the genetic code that sets the rules for where on the DNA strand the nucleosomes will be situated. Their findings appeared today in Nature.
Continue reading “Scientists Discover a Genetic Code for Organizing DNA”

Research Identifies Protein In Mice That Regulates Bone Formation

Osteoporosis, a disease characterized by a decrease in bone mass and density and which makes people more susceptible to bone fractures and deformities, afflicts some 10 million Americans over the age of 50. Researchers at the Harvard School of Public Health (HSPH) have discovered that eliminating a protein, Schnurri-3 (Shn3), in mice led to profound increases in bone mass throughout their skeletal system. The results may have implications for the treatment of osteoporosis. The study was published in the May 26 edition of Science.

Continue reading “Research Identifies Protein In Mice That Regulates Bone Formation”