Vaccine thwarts the tangles of Alzheimer’s

A new study by NYU Medical Center researchers shows for the first time that the immune system can combat the pathological form of tau protein, a key protein implicated in Alzheimer’s disease. The researchers, led by Einar Sigurdsson Ph.D. at New York University School of Medicine, created a vaccine in mice that suppresses aggregates of tau. The protein accumulates into harmful tangles in the memory center of the brains of Alzheimer’s patients.

The vaccine successfully slowed the deterioration of motor abilities produced by excessive amounts of tau in the central nervous system of mice, according to the study published in the August 22, 2007 issue of the Journal of Neuroscience. Dr. Sigurdsson plans to conduct follow-up studies using mice that slowly develop tangles and cognitive impairments without movement problems.

Continue reading “Vaccine thwarts the tangles of Alzheimer’s”

Advertisements

Cellular pathway yields potential new weapon in vaccine arsenal

When a cell has to destroy any of its organelles or protein aggregates, it envelops them in a membrane, forming an autophagosome, and then moves them to another compartment, the lysosome, for digestion. Two years ago, Rockefeller University assistant professor Christian Münz showed that this process, called autophagy, sensitizes cells for recognition by the immune system’s helper T cells. But he didn’t know how often this pathway is used or how efficient it is. Now, a new study published online today in the journal Immunity goes a long way toward addressing these questions and shows that the pathway is so common that it could be a valuable new way of boosting vaccine efficacy.

DCs
Continue reading “Cellular pathway yields potential new weapon in vaccine arsenal”

Fighting HIV by Building a New Killer Frankenstein Virus

In order to find out how one of the world’s most devastating diseases overcomes state-of-the-art drugs, scientists led by Dr. Vineet KewalRamani at National Cancer Institute (NCI) are biohacking and re-engineering the HIV virus. Dr. KewalRamani and his collegues have combined pieces of HIV and another virus to create a deadly new hybrid—a tenacious little microbe that knows all the tricks of its parent pathogens. Discovering where, and how, HIV hides in the body will be a critical step towards a cure for the disease—or at least a better treatment.

hiv-microscopy-big.jpg
Continue reading “Fighting HIV by Building a New Killer Frankenstein Virus”

Vaccine for brain tumors shows promising results

A vaccine for treating a recurrent cancer of the central nervous system that occurs primarily in the brain, known as glioma, has shown promising results in preliminary data from a clinical trial at UCSF Medical Center.

Findings from the first group of six patients in the study, being conducted at the UCSF Brain Tumor Research Center, showed that vitespen (trademarked as Oncophage), a vaccine made from the patient’s own tumor, was associated with tumor-specific immune response in patients with recurrent, high-grade glioma.
Continue reading “Vaccine for brain tumors shows promising results”

Reconstructed 1918 influenza virus induces immune response that fails to protect

An analysis of mice infected with the reconstructed 1918 influenza virus has revealed that although the infection triggered a very strong immune system response, the response failed to protect the animals from severe lung disease and death.
Continue reading “Reconstructed 1918 influenza virus induces immune response that fails to protect”

‘Obesity vaccine’ shows promise

IN what could become a new weapon in the battle of the bulge, scientists have reported initial success with an experimental vaccine for obesity.

The researchers found that when they gave rats a vaccine against a “hunger hormone” called ghrelin, the animals were able to live the dream of eating what they wanted without packing on body fat. The findings, published online by the Proceedings of the National Academy of Sciences, suggest a whole new approach to weight loss.
Continue reading “‘Obesity vaccine’ shows promise”

AIDS vaccine research offers new insights on survival in monkey models of HIV infection

New insights into how a subpopulation of helper T-cells provides immunity and promotes survival following infection with an AIDS-like virus offer a new means of predicting an AIDS vaccine's effectiveness, a discovery that could help scientists as they test these vaccines in clinical trials.

Continue reading “AIDS vaccine research offers new insights on survival in monkey models of HIV infection”