Researchers watch brain in action

For the first time, scientists have been able to watch neurons within the brain of a living animal change in response to experience.

Thanks to a new imaging system, researchers at MIT’s Picower Institute for Learning and Memory have gotten an unprecedented look into how genes shape the brain in response to the environment. Their work is reported in the July 28 issue of Cell.

Continue reading “Researchers watch brain in action”

Advertisements

Researchers calculate human eye transmits information to the brain at the rate of an ethernet

Researchers at the University of Pennsylvania School of Medicine estimate that the human retina can transmit visual input at about the same rate as an Ethernet connection, one of the most common local area network systems used today. They present their findings in the July issue of Current Biology. This line of scientific questioning points to ways in which neural systems compare to artificial ones, and can ultimately inform the design of artificial visual systems.

1518_web.jpg

Two broad classes of ganglion cell types in the guinea pig retina: brisk cells, which are larger and transmit electrical impulses faster, and sluggish, which are smaller and slower

Continue reading “Researchers calculate human eye transmits information to the brain at the rate of an ethernet”

Nano Probe May Open New Window Into Cell Behavior

Georgia Tech researchers have created a nanoscale probe, the Scanning Mass Spectrometry (SMS) probe, that can capture both the biochemical makeup and topography of complex biological objects in their normal environment — opening the door for discovery of new biomarkers and improved gene studies, leading to better disease diagnosis and drug design on the cellular level. The research was presented in the July issue of IEE Electronics Letters.

Georgia Tech’s SMS Probe gently pulls biomolecules precisely at a specific point on the cell/tissue surface, ionizes these biomolecules and produces “dry” ions suitable for analysis and then transports those ions to the mass spectrometer.
Continue reading “Nano Probe May Open New Window Into Cell Behavior”

DNA damage study probes inflammation, disease link

New research at MIT may help scientists better understand the chemical associations between chronic inflammation and diseases such as cancer and atherosclerosis. The work could lead to drugs that break the link between the two.

dna-damage-image-enlarged.jpg

Continue reading “DNA damage study probes inflammation, disease link”

Researchers transform stem cells found in human fat into smooth muscle cells

Researchers at UCLA today announced they have transformed adult stem cells taken from human adipose – or fat tissue – into smooth muscle cells, which help the normal function of a multitude of organs like the intestine, bladder and arteries. The study may help lead to the use of fat stem cells for smooth muscle tissue engineering and repair.
Reported in the July 24 online edition of the Proceedings of the National Academy of Sciences, the study is one of the first to show that stem cells derived from adipose tissue can be changed to acquire the physical and biochemical characteristics as well as the functionality of smooth muscle cells.
Continue reading “Researchers transform stem cells found in human fat into smooth muscle cells”

Scientists Discover Key to Growing New Stem Cells

Scientists at Duke University Medical Center have demonstrated they can grow human stem cells in the laboratory by blocking an enzyme that naturally triggers stem cells to mature and differentiate into specialized cells.
The discovery may enable scientists to rapidly grow stem cells and transplant them into patients with blood disorders, immune defects and select genetic diseases, said the Duke researchers.
Continue reading “Scientists Discover Key to Growing New Stem Cells”

Researchers Show How Brain Decodes Complex Smells

Duke University Medical Center researchers have discovered how the brain creates a scent symphony from signals sent by the nose.

In studies in mice, the researchers found that nerve cells in the brain’s olfactory bulb — the first stop for information from the nose — do not perceive complex scent mixtures as single objects, such as the fragrance of a blooming rose. Instead, these nerve cells, or neurons, detect the host of chemical compounds that comprise a rose’s perfume. Smarter sections of the brain’s olfactory system then categorize and combine these compounds into a recognizable scent. According to the researchers, it’s as if the brain has to listen to each musician’s melody to hear a symphony.

Humans may rely on the same smell decoding system, because mice and men have similar brain structures for scent, including an olfactory bulb, the researchers said.
Continue reading “Researchers Show How Brain Decodes Complex Smells”