Scientists Transform Skin Cells into Functioning Liver Cells

The power of regenerative medicine now allows scientists to transform skin cells into cells that closely resemble heart cells, pancreas cells and even neurons. However, a method to generate cells that are fully mature – a crucial prerequisite for life-saving therapies – has proven far more difficult.But now, scientists at the Gladstone Institutes and UC San Francisco have made an important breakthrough: they have discovered a way to transform skin cells into mature, fully functioning liver cells that flourish on their own, even after being transplanted into laboratory animals modified to mimic liver failure.

via Scientists Transform Skin Cells into Functioning Liver Cells | UC San Francisco.

Advertisement

3D-printed ‘electronic glove’ could help keep your heart beating forever

Scientists have created a revolutionary new electronic membrane that could replace pacemakers, fitting over a heart to keep it beating regularly over an indefinite period of time.

The device uses a “spider-web-like network of sensors and electrodes” to continuously monitor the heart’s electrical activity and could, in the future, deliver electrical shocks to maintain a healthy heart-rate.

Researchers from the University of Illinois at Urbana-Champaign and Washington University in St. Louis used computer modelling technology and a 3D-printer to create a prototype membrane and fit it to a rabbit’s heart, keeping the organ operating perfectly “outside of the body in a nutrient and oxygen-rich solution”.

via 3D-printed ‘electronic glove’ could help keep your heart beating for ever – Science – News – The Independent.

Neuroscientists show that multiple cortical regions are needed to process information

Previous studies of the brain have depicted the cortex as a patchwork of function-specific regions. Parts of the visual cortex at the back of the brain, for instance, encode color and motion, while specific frontal and middle regions control more complex functions, such as decision-making. Neuroscientists have long criticized this view as too compartmentalized.In a paper published today in Science, the researchers from the Picower Institute for Learning and Memory at MIT show that, indeed, multiple cortical regions work together simultaneously to process sensorimotor information—sensory input coupled with related actions—despite their

Neuroscientists show that multiple cortical regions are needed to process informationvia Neuroscientists show that multiple cortical regions are needed to process information.
Continue reading “Neuroscientists show that multiple cortical regions are needed to process information”