Nanotubes sniff out cancer agents in living cells

MIT engineers have developed carbon nanotubes into sensors for cancer drugs and other DNA-damaging agents inside living cells.

The sensors, made of carbon nanotubes wrapped in DNA, can detect chemotherapy drugs such as cisplatin as well as environmental toxins and free radicals that damage DNA. Continue reading “Nanotubes sniff out cancer agents in living cells”

Nanotechnology boosts war on superbugs

This week Nature Nanotechnology journal (October 12th) reveals how scientists from the London Centre for Nanotechnology (LCN) at UCL are using a novel nanomechanical approach to investigate the workings of vancomycin, one of the few antibiotics that can be used to combat increasingly resistant infections such as MRSA. The researchers, led by Dr Rachel McKendry and Professor Gabriel Aeppli, developed ultra-sensitive probes capable of providing new insight into how antibiotics work, paving the way for the development of more effective new drugs. Continue reading “Nanotechnology boosts war on superbugs”

Scientists develop sensitive nanowire disease detectors

Yale scientists have created nanowire sensors coupled with simple microprocessor electronics that are both sensitive and specific enough to be used for point-of-care (POC) disease detection, according to a report in Nano Letters.

The sensors use activation of immune cells by highly specific antigens — signatures of bacteria, viruses or cancer cells — as the detector. When T cells are activated, they produce acid, and generate a tiny current in the nanowire electronics, signaling the presence of a specific antigen. The system can detect as few as 200 activated cells. Continue reading “Scientists develop sensitive nanowire disease detectors”

Nanodiamond drug device could transform cancer treatment

A Northwestern University research team has developed a promising nanomaterial-based biomedical device that could be used to deliver chemotherapy drugs locally to sites where cancerous tumors have been surgically removed.

The flexible microfilm device, which resembles a piece of plastic wrap and can be customized easily into different shapes, has the potential to transform conventional treatment strategies and reduce patients’ unnecessary exposure to toxic drugs. The device takes advantage of nanodiamonds, an emergent technology, for sustained drug release. Continue reading “Nanodiamond drug device could transform cancer treatment”

New nano device detects immune system cell signaling

Scientists have detected previously unnoticed chemical signals that individual cells in the immune system use to communicate with each other over short distances.

The signals the researchers detected originated in dendritic cells – the sentinels of the immune system that do the initial detection of microscopic invaders – and were received by nearby T-cells, which play a number of crucial roles in the immune system, including coordination of attacks on agents that cause disease or infection.

Vanderbilt)
artist

An artist’s rendering of the completed MTN shows cells trapped inside as signals travel to them. (Source: Vanderbilt)

Continue reading “New nano device detects immune system cell signaling”

Slipping through cell walls, nanotubes deliver high-potency punch to cancer tumors in mice

The problem with using a shotgun to kill a housefly is that even if you get the pest, you’ll likely do a lot of damage to your home in the process. Hence the value of the more surgical flyswatter.

Cancer researchers have long faced a similar situation in chemotherapy: how to get the most medication into the cells of a tumor without “spillover” of the medication adversely affecting the healthy cells in a patient’s body.

Now researchers at Stanford University have addressed that problem using single-walled carbon nanotubes as delivery vehicles. The new method has enabled the researchers to get a higher proportion of a given dose of medication into the tumor cells than is possible with the “free” drug-that is, the one not bound to nanotubes-thus reducing the amount of medication that they need to inject into a subject to achieve the desired therapeutic effect.
Continue reading “Slipping through cell walls, nanotubes deliver high-potency punch to cancer tumors in mice”

Scientists overcome nanotech hurdle

When you make a new material on a nano scale how can you see what you have made? A team of scientists has made a significant step toward overcoming this major challenge faced by nanotechnology scientists.

With new research published today (13 August) in ChemBioChem, the team from the University of Liverpool, The School of Pharmacy (University of London) and the University of Leeds, show that they have developed a technique to examine tiny protein molecules called peptides on the surface of a gold nanoparticle. This is the first time scientists have been able to build a detailed picture of self-assembled peptides on a nanoparticle and it offers the promise of new ways to design and manufacture novel materials on the tiniest scale – one of the key aims of nanoscience.
Continue reading “Scientists overcome nanotech hurdle”

New disease-fighting nanoparticles look like miniature pastries

Ultra-miniature bialy-shaped particles — called nanobialys because they resemble tiny versions of the flat, onion-topped rolls popular in New York City — could soon be carrying medicinal compounds through patients’ bloodstreams to tumors or atherosclerotic plaques.
Continue reading “New disease-fighting nanoparticles look like miniature pastries”