Could Dr. House be replaced by a computer?

Scientists know that different normal and diseased tissues behave differently. But a method that tells them just how they do so may one day give medical science a new way to fight obesity, hypertension, diabetes and other dangerous disorders of the metabolism.

Until now, scientists had to rely on basic observations at the cellular level, since they lacked information about the metabolic processes of individual organs, such as the liver, heart and brain.

But a new computational approach developed by computer scientists Tomer Shlomi, Moran Cabili and Prof. Eytan Ruppin from the Blavatnik School of Computer Science at Tel Aviv University may help science gain a clearer overall picture of the metabolic processes in our different tissues. Continue reading “Could Dr. House be replaced by a computer?”

Advertisements

Border control: Study shows how proteins permit entry to a cell

The means by which proteins provide a ‘border control’ service, allowing cells to take up chemicals and substances from their surroundings, whilst keeping others out, is revealed in unprecedented molecular detail for the first time today (16 October) in Science Express. Continue reading “Border control: Study shows how proteins permit entry to a cell”

Bioengineers build first-ever multi-input ‘plug-and-play’ synthetic RNA device

Engineers from the California Institute of Technology (Caltech) have created a “plug-and-play” synthetic RNA device–a sort of eminently customizable biological computer–that is capable of taking in and responding to more than one biological or environmental signal at a time.

In the future, such devices could have a multitude of potential medical applications, including being used as sensors to sniff out tumor cells or determine when to turn modified genes on or off during cancer therapy. Continue reading “Bioengineers build first-ever multi-input ‘plug-and-play’ synthetic RNA device”

Researchers successfully reprogram keratinocytes attached to a single hair

The first reports of the successful reprogramming of adult human cells back into so-called induced pluripotent stem (iPS) cells, which by all appearances looked and acted liked embryonic stem cells created a media stir. But the process was woefully inefficient: Only one out of 10,000 cells could be persuaded to turn back the clock.

Now, a team of researchers led by Juan Carlos Izpisúa Belmonte at the Salk Institute for Biological Studies, succeeded in boosting the reprogramming efficiency more than 100fold, while cutting the time it takes in half. In fact, they repeatedly generated iPS cells from the tiny number of keratinocytes attached to a single hair plucked from a human scalp. Continue reading “Researchers successfully reprogram keratinocytes attached to a single hair”

Nanotechnology boosts war on superbugs

This week Nature Nanotechnology journal (October 12th) reveals how scientists from the London Centre for Nanotechnology (LCN) at UCL are using a novel nanomechanical approach to investigate the workings of vancomycin, one of the few antibiotics that can be used to combat increasingly resistant infections such as MRSA. The researchers, led by Dr Rachel McKendry and Professor Gabriel Aeppli, developed ultra-sensitive probes capable of providing new insight into how antibiotics work, paving the way for the development of more effective new drugs. Continue reading “Nanotechnology boosts war on superbugs”

Scientists eliminate viral vector in stem cell reprogramming

Previously, Dr. Shinya Yamanaka of Kyoto University and the Gladstone Institute of Cardiovascular Disease, had shown that adult cells can be reprogrammed to become embryonic stem cell–like using a cancer-causing oncogene as one of the four genes required to reprogram the cells, and a virus to transfer the genes into the cells. In the last year, Dr. Yamanaka and other labs showed that the oncogene, c-Myc, is not needed. However the use of viruses that integrate into the genome prohibit use of iPS cells for regenerative medicine because of safety concerns: its integration into the cell’s genome might activate or inactivate critical host genes.

Now Dr. Yamanaka’s laboratory in Kyoto has eliminated the need for the virus. In a report published this week in Science, they showed that the critical genes can be effectively introduced without using a virus. The ability to reprogram adult cells into iPS cells without viral integration into the genome also lays to rest concerns that the reprogramming event might be dependent upon viral integration into specific genomic loci that could mediate the genetic switch. Continue reading “Scientists eliminate viral vector in stem cell reprogramming”

Scientists develop sensitive nanowire disease detectors

Yale scientists have created nanowire sensors coupled with simple microprocessor electronics that are both sensitive and specific enough to be used for point-of-care (POC) disease detection, according to a report in Nano Letters.

The sensors use activation of immune cells by highly specific antigens — signatures of bacteria, viruses or cancer cells — as the detector. When T cells are activated, they produce acid, and generate a tiny current in the nanowire electronics, signaling the presence of a specific antigen. The system can detect as few as 200 activated cells. Continue reading “Scientists develop sensitive nanowire disease detectors”