New HIV drug shows ‘unprecedented’ results

A new category of drug has shown promising results for HIV/AIDS patients who failed to respond to other treatments, a study to be shows.

Especially when combined with other medications, raltegravir — the first in a new class of anti-retroviral drugs called integrase inhibitors — dramatically reduced the presence of the HIV virus and boosted immunity in clinical-trial patients, according to the study in the British journal The Lancet.
Continue reading “New HIV drug shows ‘unprecedented’ results”

Advertisements

Wrinkle Fillers Spur Collagen Production

Are you always on the hunt for a way to iron out the time lines etched in your face? Behold: a new study has found that multiple injections of Restylane, a popular “skin filler” believed to temporarily zap lines by literally filling them in, actually stimulates the skin to produce collagen, a protein that keeps it firm and supple but dwindles with age and sun exposure causing sagging and wrinkling.

“We found that in addition to filling up space, these injections induce robust production of collagen, thought to give rise to the smooth contour of the skin,” says Frank Wang, co-author of the study published in the February issue of Archives of Dermatology.

e1713ffe-e7f2-99df-3ef54957e1394759_1.gif

Read rest of this story on Scientific American site.

Super-thin membrane, 50 atoms thick, sorts individual molecules

A newly designed porous membrane, so thin it’s invisible edge-on, may revolutionize the way doctors and scientists manipulate objects as small as a molecule.

The 50-atom thick filter can withstand surprisingly high pressures and may be a key to better separation of blood proteins for dialysis patients, speeding ion exchange in fuel cells, creating a new environment for growing neurological stem cells, and purifying air and water in hospitals and clean-rooms at the nanoscopic level.

3097_web.jpg
Continue reading “Super-thin membrane, 50 atoms thick, sorts individual molecules”

Scientists report full humanization of yeast glycosylation pathway

For the first time, scientists have engineered yeast cells capable of producing a broad repertoire of recombinant therapeutic proteins with fully human sugar structures (glycosylation). These sugar structures ensure a glycoprotein’s biological activity and half-life and to date, have necessitated the expression of therapeutic glycoproteins in mammalian hosts. The accomplishment reported today has the potential to eliminate the need for mammalian cell culture, while improving control over glycosylation, and improving performance characteristics of many therapeutic proteins. Continue reading “Scientists report full humanization of yeast glycosylation pathway”

Drug that battles resistance to leukemia pill Gleevec ‘extremely effective’ against cancer

An experimental therapy that battles drug resistance in Chronic Myeloid Leukemia (CML) has proved "extremely effective" in fighting cancer, giving patients for whom all conventional therapies have failed another option, researchers at UCLA's Jonsson Cancer Center reported.

The Bristol-Myers Squibb therapy, Sprycel (dasatinib), treats CML that has mutated and becomes resistant to the leukemia pill Gleevec, said Dr. Charles Sawyers, a professor of hematology/oncology, a Jonsson Cancer Center researcher and lead author of the study, published in the June 15, 2006 issue of the peer-reviewed New England Journal of Medicine.
Continue reading “Drug that battles resistance to leukemia pill Gleevec ‘extremely effective’ against cancer”

Nature’s strongest glue could be used as a medical adhesive

A bacterium that lives in rivers, streams and human aqueducts uses nature's strongest glue to stay in one place, according to new research by Indiana University Bloomington and Brown University scientists reported in next week's (April 11) Proceedings of the National Academy of Sciences.
glue.jpg
Continue reading “Nature’s strongest glue could be used as a medical adhesive”

Scientists demonstrate nanotech artificial muscles powered by highly energetic fuels

University of Texas at Dallas nanotechnologists have made alcohol- and hydrogen-powered artificial muscles that are 100 times stronger than natural muscles, able to do 100 times greater work per cycle and produce, at reduced strengths, larger contractions than natural muscles. Among other possibilities, these muscles could enable fuel-powered artificial limbs, “smart skins” and morphing structures for air and marine vehicles, autonomous robots having very long mission capabilities and smart sensors that detect and self-actuate to change the environment.

nanotech.muscle.jpg

Continue reading “Scientists demonstrate nanotech artificial muscles powered by highly energetic fuels”