Remote-controlled genes trigger insulin production

Researchers have remotely activated genes inside living animals, a proof of concept that could one day lead to medical procedures in which patients’ genes are triggered on demand.

The work, in which a team used radio waves to switch on engineered insulin-producing genes in mice, is published today in Science1.

Jeffrey Friedman, a molecular geneticist at the Rockefeller University in New York and lead author of the study, says that in the short term, the results will lead to better tools to allow scientists to manipulate cells non-invasively. But with refinement, he thinks, clinical applications could also be possible.

nanoparticle_induced_cell_excitation

 

Nanoparticles induced cell excitation to increase insulin expression and release in vitro (credit: Sarah A. Stanley et al./Science)

Friedman and his colleagues coated iron oxide nanoparticles with antibodies that bind to a modified version of the temperature-sensitive ion channel TRPV1, which sits on the surface of cells. They injected these particles into tumours grown under the skins of mice, then used the magnetic field generated by a device similar to a miniature magnetic-resonance-imaging machine to heat the nanoparticles with low-frequency radio waves. In turn, the nanoparticles heated the ion channel to its activation temperature of 42 °C. Opening the channel allowed calcium to flow into cells, triggering secondary signals that switched on an engineered calcium-sensitive gene that produces insulin.

After 30 minutes of radio-wave exposure, the mice’s insulin levels had increased and their blood sugar levels had dropped.


via Remote-controlled genes trigger insulin production : Nature News & Comment.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s