Oxidative damage in newly synthesized DNA plays a role in Parkinson’s disease

Oxygen is the quintessential two-edged sword of molecular biology: essential for (animal) life, but at the same time a perennial source of damage to macromolecules. Reactive oxygen species (ROS), arising from both external sources and the intrinsic metabolic machinery of the cell itself, have been implicated in many aspects of cellular aging.

Of particular interest to human beings, especially those living in the rapidly aging post-industrial Western nations, is the relationship between oxidative damage and neurodegenerative illness. While most of the age-related neurodegenerative diseases are caused by accumulation of protein aggregates, it is becoming evident that ROS play an important role in exacerbating the underlying pathologies: e.g., DNA oxidation arises early in the pathogenesis of Alzheimer’s disease; and oxidative damage to a key anti-oxidant defense protein may generate a pernicious positive-feedback loop in the initiating events of Parkinson’s disease.

Read rest of the story at Ouroboros site.

Advertisement

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s