Building a Better Chemical Trap

You might expect that a stronger cage is always better. But the power of a new chemical cage announced this week lies in its weakness: It’s about 100 times more efficient at releasing its prisoner than its widely used counterparts. The flimsy molecular pen may help map the brain’s chemical circuitry and decipher the signals that control the beating heart.


One way to study how cells function is to control the availability of a particular biomolecule by encapsulating it in a chemical box until a flash of light sets it free. Researchers have used this strategy to probe how cells react to the sudden release of signalling molecules, such as the neurotransmitter glutamate and calcium ions. But currently available cages do not absorb light very well, and the light needed to bust them open is so intense that it damages the surrounding tissue.

To avoid this problem, biochemist Graham Ellis-Davies of Drexel University in Philadelphia, Pennsylvania, and colleagues synthesized a new compound called nitrodibenzofuran (NDBF), which is similar in chemical make-up to previous cages but disintegrates with a light flash only 1% as bright. The team trapped calcium ions in NDBF and inserted the mixture into heart muscle cells isolated from a guinea pig. Normally, the calcium would stimulate muscle contraction, but the NDBF prevented this from happening. When the researchers shined a short, relatively-weak pulse of UV laser-light on the cells, the cages broke and the freed calcium caused the muscle cells to contract fully, the team reports in the January issue of Nature Methods. Under the same light conditions, standard chemical cages did not break down as well and the cells contracted only partially.
read complete story

Source: By Michael Schirber ScienceNOW Daily News

Advertisements

One thought on “Building a Better Chemical Trap

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s